Curvature-aware manifold learning

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature-aware Manifold Learning

Traditional manifold learning algorithms assumed that the embedded manifold is globally or locally isometric to Euclidean space. Under this assumption, they divided manifold into a set of overlapping local patches which are locally isometric to linear subsets of Euclidean space. By analyzing the global or local isometry assumptions it can be shown that the learnt manifold is a flat manifold wit...

متن کامل

A Curvature-based Manifold Learning Algorithm

Manifold learning aims to find a low dimensional parameterization for data sets which lie on nonlinear manifolds in a high-dimensional space. Applications of manifold learning include face recognition, image retrieval, machine learning, classification, visualization, and so on. By studying the existing manifold learning algorithms and geometric properties of local tangent space of a manifold, w...

متن کامل

Coarse Ricci curvature and the manifold learning problem

Abstract. We consider the framework used by Bakry and Emery in their work on logarithmic Sobolev inequalities to define a notion of coarse Ricci curvature on smooth metric measure spaces alternative to the notion proposed by Y. Ollivier. We discuss applications of our construction to the manifold learning problem, specifically to the statistical problem of estimating the Ricci curvature of a su...

متن کامل

Coarse Ricci Curvature with Applications to Manifold Learning

Consider a sample of n points taken i.i.d from a submanifold of Euclidean space. This defines a metric measure space. We show that there is an explicit set of scales tn → 0 such that a coarse Ricci curvature at scale tn on this metric measure space converges almost surely to the coarse Ricci curvature of the underlying manifold.

متن کامل

Semi-supervised classification learning by discrimination-aware manifold regularization

Manifold regularization (MR) provides a powerful framework for semi-supervised classification (SSC) using both the labeled and unlabeled data. It first constructs a single Laplacian graph over the whole dataset for representing the manifold structure, and then enforces the smoothness constraint over such graph by a Laplacian regularizer in learning. However, the smoothness over such a single La...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2018

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2018.06.007